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CHAPTER I 

INTRODUCTION 

1 . 1  Statement of the Problem for  DISCRETE 
Time Parameterization 

Consider the vector linear stochastic dynamical system given 

by the equation 

X = A x  + f  ( 1 . 1 )  -k+l -k -k 

where x is an r element vector (i. e . ,  an r x 1 matrix) repre-  

senting the state of the dynamical system at time k.  x is the 

random initial condition assumed here to be a vector gaussianly dis- 

tributed with mean 2 and covariances matrix E x xer= P . A is 

an r x r matrix of gaussian random parameters a with known 

mean and covariance elements E(a - E  a ) (a. ) for 

-k 

0 

4. 

0 0 0  0 

i j  

i j  i j  1 1  12j2-E ai 2 2  j 1 1  
i i j , j = 1, 2 , 3 , .  . .,r. f k  is an r element vector gaussian 
1 2 1 2  

white noise process with zero mean and covariance function 

E 5 f = Ro likj where R 2 0 and 6 is the Kronecker delta k j  0 i j  
function. 

Consider the above dynamical system observed in additive 

noise. Let z be the r dimensional observation vector of the 

state x and q the gaussian white noise sequence with zero mean 

and covariance E q q = N 6 where N > 0 and 6 is the 

k 

k k 

k R  o kR 0 i j  
Kronecker delta function. q f , a and x a re  assumed statis-  k’ i j  0 

tically independent of each other. 

The problem is, given the measurements zo, zl, . . . , zk, 

estimate the random plant parameters a. 

weighted mean square e r r o r  

in such a way that the 
1j 

- 
2 A e = E(Q-&* - -  w(Cu-6) - -  = trace E(Q-Q) - -  (A)* - -  W* 

1 



2 

is minimized. The asterisk above denotes the matrix (vector) is to 
2 

be transposed. W = [w,] is an r x r2 positive definite matrix of 
0 
L weighting elements with k, R = 1, 2, . . . , r , while 

A and i, j = 1, 2 , .  . . ,r.  cy is the estimate of CY - and hence of 

f i  The optimum minimum mean square estimate cyg(k) 

A. 

of CY 

. . . , z given z 

or Bayes estimate. 

is the conditional expectation E[cy 1 z 0' zl, . . . zk] 
0, zl' k 

The Bayes estimate is the nonlinear functional that is to be 

investigated. The scalar case, r = 1, wi l l  be investigated in  detail, 

and then extensions to the matrix case developed. 

1.2 Statement of the Problem for CONTINUOUS 
Time Parameterization 

Consider now the vector linear stochastic dynamical system ' given by the equation: 

where x(t) - is an r element vector function of time t, x(o) - 
is the initial state of the system and assumed here to be a gauszan 

= x 0 

~- 

'The differential equation should actually have been written in  the 
I 

differential form d x = A  xtdt +R: dpt of References 6, 20, and 21, 

where p is a vector process of independent Brownian motions and 

X t 
R t 

when Rt is a constant. Since E ( t )  in the end wi l l  of as Rt dt 
30 always be represented in its integral form, use of the Stieltjes 

form, as used in the references, appears cumbersome, so that it 
will  not be used here, but understood to be the underlying structure. 

t 

t 
for known A, 

is positive definite, so that heuristically, 

a Markov process independent of the p t process, 

E ( t )  may be thought 
1 dpt 2 



. vector random parameter with mean 

E x x = P . As abcve, A is an r x r rrratrix of gaussian random 

parameters with known mean and covariance elements, 

and covariance matrix 
0 

rb T 

0 0  0 

E(ai - E  ai 1 1  ) (ai 2 2  i j  2 2  
- E  a 

1 1  

where i , i , j , j = 1 , 2 ,  . . . , r. C(t) is an r element vector 

gaussian white noise process with zero mean and covariance function, 
1 2 1 2  

where Ro 3 0. 6( t  -t ) is the so-called impulse function. 

Consider the dynamical system to be observed in additive 

noise; that is, 

where x(t) is the state at time t and u ( t )  is gaussian additive 

white noise of zero mean and i ts  covariance is given by 

The problem now is, given the measurements z(t), 0 5 t 5 T, 

estimate the random plant parameter a 

weighted mean square e r r o r  

in such a way that the 
i j  

is minimized. The asterisk denotes transposition of the associated 
2 2  

matrix. W = [ w ~ ]  is an r x r positive definite matrix of weight- 
F1 
L 

ing elements with k, ,4? = 1, 2, . . L ) ,  r . A s  before, 
r , ::: 

.4 = r(i-1) + j and i, j = 1, 2,. . . , r .  $ is the esti- where CY = aij, - 
mate of CY and hence of A. - 



4 

A The optimum minimum mean square estimate CY (k) of CY 
B 

when z(t), 0 5 t 5 T, is available is the conditional expectation 

&(k) = E k l z ( t ) ,  0 5 t 5 T} . 
The conditional expectation of CY given the realization 

14 z(t), t E[ 0, T] is known as the Bayes estimate 

terion is the minimum mean square e r r o r  criterion. One should note 

that z(t)  involves x(t), and x(t) in turn involves e x . e is 

when the e r r o r  cr i -  

At At  
0 

not gaussian. This is true even in scalar  case where A = a. F o r  

fixed t, eat is lognormally distributed 2 
- 

and so, when the gaussian 

x 

tributed. Consequently z(t) is non-gaussianly distributed. Intui- 

tively one would then suspect nonlinear weighting of z ( t ) ,  t E [  0, T] 

improves the estimate over a linear estimate. 0 = 0, 

is multiplied by it, eat x is for fixed t non-gaussianly dis- 
0 0 

In fact, i f  

j '  
the minimum variance linear estimate of a is a, the mean of a 

Observing z(t) gives no new information on a. 

The approach to be followed in the succeeding chapters is to 

first  consider the scalar cases, i.e.,  the scalar  discrete case and 

then the scalar continuous case. Certain computation difficulties 

wil l  be seen to arise, which can be overcome by using polynomial 

estimators. Last, the vector dynamical case wi l l  be treated. 

1 .3  Examples of Physical Systems 

Linear dynamical systems of the form - x(t) dt - - A x(t) + E ( t )  

= A X, + E ,  ar ise  in many engineering problems, e .  g., in k+ 1 or x 

RCL circuits with thermal noise, lumped parameter mechanical 

systems subjected to random vibrations, and guidance of space 

vehicles, just to name a few.  In each of these examples, the A 

matrix may not have been known other than with respect to some 

nominal value, or it might have been known only with respect to a 



5 

se t  of means and variances. It is desired to estimate A based upon 

the output of the dynamical system. 

Another class of problems occurs whenever the A matrix 

changes from its original value. Such a situation occurs whenever 

components deteriorate , either from a harsh environment o r  from 

age. In such cases, a new estimate of the plant is desired. 

In certain space guidance applications , the linearized equa- 

tions of motion describing small  variantions about the nominal t ra -  

jectory depend upon certain parameters , such a s  mass, inertia, con- 

figuration, rigidity, etc. These quantities a r e  known only approxi- 

mately. By re-identifying the plant, a more accurate estimate of 

the system is obtained. In each of the above examples, the systems 

a re  to be identified even if the measurements a re  noisy. 

1.4 Historical Background 

Many authors have investigated the identification of linear 

stochastic systems by noisy measurements. 

increase the dimension of the state space and either 

They have suggested to 

do essentially piecewise linear operations , recal-  

culating new gains at each step, such a s  described 
1 7  3 9  34 37 by Gunkel, Lee,27 Stubberud, Ohap, Seal, o r  

24 
Kopp and Orford, o r  

determine certain gradients , and then solve the 

resulting differential equation by using the quasi- 

linearization of Kalaba, a s  described by Kumar and 

Sridhar, o r  

expand the function describing the nonlinear plant 

in te rms  of a taylor series,  retaining te rms  up 

to second order in the state variable, do the same 

25 
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for the observation function and then solve the 

system of equations for  the best estimate as sug- 

gested by Bass, et al. 5 

The optimum minimum mean square estimate is s t i l l  the Bayes o r  

conditional expectation of the modified state given the observables . 
The above are approximations to the Bayes estimate. None appear 

to have given data on how well they approximate the Bayes estimate, 

particularly if the statistics a re  strongly non-gaussian and/or the 

noise levels a r e  large. In each of the above cases, the processing 

of the data does not occur until after the measurements have been 

made. 

a r e  of the form suggested by Cameron and Martin, 

Wiener,37 A. V. Balakr i~hnan ,~’  

pointed out by Balakrishnan, 

is possible to construct processes for which one cannot produce a 

convergent polynomial sequence. It is possible, however, to con- 

struct an expansion in te rms  of nonlinear functionals of the observ- 

ables which wi l l  give point-wise convergence to the Bayes estimate. 

This is not the case however, when the polynomial estimators 
7 Masani and 

o r  as developed herein. A s  
3 41 Polya and Szego have shown that it 

3 

Another approach is to solve a partial differential equation 

(PDE) in the form of the Fokker-Planck or Komogorov diffusion 

equation for the conditional probability density. 

by Stratonovitch, Kushner, Fisher, and M0rtensen.3~ The 

technique of Stratonovitch (corrected by Kushner, which in turn w a s  

corrected by Fisher) requires solving a set  of nonlinear partial dif- 

ferential equations which a re  coupled. 

veloped a partial differential equation, which, when solved, gives the 

conditional mean and a limited number of quasi-moments. 

case, the partial differential equations a re  highly coupled in the 

random parameters. 

This w a s  suggested 
38 26 13 

Fisher has in addition de- 

In any 

Consequently, they do not lend themselves to 

b 
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3 8  solution, but only to approximate solutions. Mortensen has 

developed a PDE which, when normalized, becomes the conditional 

probability density of the amended state space given the observation 

over the time interval [ 0, TI. In this way he avoids certain coupling 

between terms of the PDE associated with the scalar dynamical 

system where - no disturbing noise is acting but there is measurement 

noise. With 

disturbing noise, the PDE of Mortensen becomes a second order 

quasilinear PDE, which at least to date has not been solved. 

The PDE he obtains is of first order  and can be solved. 

In short, the identification problem posed in the dissertation 

has not been investigated by others in the manner proposed herein. 



CHAPTER I1 

BAYES ESTIMATE OF SCALAR PLANT PARAMETER - 

2.1 

square 

DISCRETE TIME CASE 

Statement of the Problem 

The objective of this chapter is to develop the minimum mean 

estimate of the scalar random plant parameter a. The 

problem is a s  posed in Section 1.1, namely, given the scalar dynam- 

ical system, x = a x + 5 and the observations, zk= xk+ qk, 

where k = 0,1, . . . , q, estimate the scalar random plant parameter 
k+l k k* 

a with known distribution. 

gaussian sequences with zero means such that E E . E  .= R 

E 5 . q  = 0, E q.q.= N 6 

2. 2 The Initial State x is known 

Ek,  qk a r e  statistically independent white 

6 
1 J o ij' 

x is the initial state of the system. 
1 j  1 J o i j '  o 

0 

The Bayes estimate of a, based upon the k+l observations 

zo, zl, . . . , z is k 1 a p(a) p(zo, 8 z I a)  da 

(j'p(a)p(zolJ.o.OZ k la)da 
( 2 . 1 )  A aB(k) = E[alzo..  .zk] = k 

pz lA(zo, . e . , z I a)  is a gaussian conditional probability * k 
density. Denote the observations as a vector Z k = [ zo, zl, . . . 'k] J 

and its mean conditioned on a by Z Let 
k' 

x ... 01 

* A / Q \  = I7 / 1 7  -7 \ I 7  - Z  ) l a )  
*Ak'u' - \'-k uk"'k k 

8 



where 

x . = x  = N  6 
OJ jo o oj  j = 8,1, ..., k 

clearly IAk(a) I is a polynomial in a for k 2 2. The conditional 

probability density p(zo, . . . , zk I a)  or pz lA(Zk I a )  becomes 

pZ A('k ( 2 . 4 )  

For k=O and for k= l ,  p 

the Bayes estimate for  the first two samples can be readily deter- 

mined. In the case where a is gaussianly distributed with mean a 

and variance cr, the Bayes estimate becomes 

( Z  I a )  is independent of a, consequently 
ZIA 

- 

- A a,(O) = a 

- x z  a 0 1  
2 N +R 

- +  
cr 0 0  

x Known 
0 

( 2 . 5 )  

2 
1 0 

2 N +Ro 

A 
a,(l) = X 

- +  
cr 0 

A 

0 
a (1) does not depend upon zo (as should be expected) since z 

does not depend upon a. Furthermore as  cr + 00, 

B 

0 

0 0 0 

z a x  + E  5 
0 

O = a + - .  A 1 -  a,(l) = - - 
X X X 

A When o+O then a (1) = a. B 

For k 1: 2, the denominator of p I A(  % I a)  is a positive 

definite polynomial in a, while the argument of the exponential is the 

ratio of two polynomials in a, the numerator of which depends upon 
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J the observables. A s  a result the integrals associated with the Bayes 

estimate cannot be readily evaluated. Numerical results could be 

obtained by use of a computer. The case, where x is a gaussian 

random scalar parameter, is treated next. 
0 

2.3 The Initial State xo is a Gaussian Random Parameter 

Let xo be a gaussian random parameter with mean and 
0 

variance V . The Bayes estimate then becomes for the k+l obser- 

vations z , . . ., z 
0 

k: 0 

(2 .6)  

where 

(2.7) 

rk= 

and 

. . .  
yoo yo 1 'ok 

ylo y1 1 

ykk 
. . . . . .  

'ko 

y = y = ajvO2 + N  6 jo oj o oj  

(2.8) 

j = O , 1 , 2  ,..., k 

(2 .9)  2 .i+j-2a + i , j  = l , 2 ,  ..., k i+j 2 =y. = a  V + R  o jk a=1 'ji i j  0 0 
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A 
Clearly ll?(a)l is a polynomial in a for  k 2 1. For k=O, a (O)=E a 

as before. When k 2 1, the argurnellt of the exponential associated 

with pz lA(Z la) is a ratio of polynomials in  a. When p 

is substituted into Equation ( 2 . 6 )  an expression is again obtained, 

which is not readily evaluated, except by numerical techniques and 

these in turn depend upon obtaining first a specific realization 

B 

( Z  la) 
Z IA 

(zo, . . . a  Zk). 

It is desirable at this point to investigate the feasibility of 

using estimators based upon polynomial weighting of the observables, 

the obvious advantage being the weightings do not depend upon the 

specific realizations, but only upon the known o r  assumed prior 

statistics. 



CHAPTER I11 

SCALAR PLANT PARAMETER ESTIMATED BY RECURSIVE 
POLYNOMIAL WEIGHTING AT DISCRETE TIMES 

3 .1  Introduction and Linear Estimator 

The problem is as  stated in Chapter 11, namely, let the scalar  

dynamical system be characterized by 

x(k+l) = a x(k) + E(k) 

z(k) = x(k) + q(k) . 

(3.1) 
and the measurements by 

(3.2) 
x(o) is a scalar gaussian initial state with mean L 
Vo. a is characterized by p(a). Let = E a. The other statistics 

a r e  as before. 

and variance 
0 

Let the first k+l observations be denoted by the vector 
J. 

Zl(k) = [ z(o),  . . . , z(k)]- and its difference from the mean as  

Y (k) = Z (k) - E Z (k). The optimum linear weighting minimum 

mean square e r r o r  estimate a (k) of a when k+l measurements 1 
have been made, is known to be 

A 
1 1 1 

kl(k) = a + ( E  a Y(k)) [E Yl(k) Y;(k)]-l 

while the corresponding e r r o r  is known to be 

el 2 (k) = E(a-a)2- ( E  aY:(k)) (E Yl(k) Y,*(k)) 
(3.4) 

In the case where the mean of the initial state is zero E Y (k) = 0, 

E a Yl(k) = 0, and e (k) = E(a-a) , even i f  the variance of the initial 

state is large, so that linear weighting does not improve the estimate 
at ail! 

1 2 - 2  

1 2  
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Equations ( 3 . 3 )  and (3 .4 )  are readily cast into the set of 

recursion relations :' The initial conditions a re  

cl(o) = 0 

A a ( 0 )  = E a 1 

j = O , l ,  ..., n 

j = O , l ,  ..., n 

( 3 . 5 )  

2 - 2  e ( 0 )  = E(a-a) = variance of a 

The recursion relations for the coefficients when j = 1, 2, . . . , k and 

k = 1 , 2 , .  . . ,n  a re  

m (k,k-j)=O k-i-l ml(k-j,k-j-l * -J)pl (k-j-l-a)m 1 (k- j -1  -a,k) ml(k-j, k)=E y(k-j) y(k) - -1 
1 

J = O  

Thus 

-1 k 

R = 1  
A y(k+l) = y(k+l) - [mJk+l, k-a) p1 (k-8)] A y(k-R) 

al(k+l)= il(k)+ cT(k+l) p;'(k+l) y(k+l) 1 A 

( 3 . 6 )  

( 3 . 7 )  

( 3 . 8 )  

( 3 . 9 )  

(3.10) 

(3.11) 

Instead of inverting a matrix of (k+l) x (k+l) dimensions, the re -  

cursive linear scheme has led to  inversion of only a scalar.  Note 

'The details of the derivation are primarily algebraic, hence for 
convenience, they a re  developed in the appendix, see Appendix A.  



that all the weightings a r e  linear. The weightings a re  determined 

strictly from the prior statistics. Consider now quadratic weighting, 

i. e., weighting on polynomials of first and second degree. 

3.2 Recursive Quadratic Estimation 

Consider the same dynamical system, x(k+l) = ax(k) + e(k) 

and the same measurement system, 

in Section 3 . 1 ,  Equations (3.1) and (3.2). But now form the vector 

z(k) = x(k) + r)(k), as discussed 

rz(o) 1 
Z2(o) =1.(.)2] after the observation z(o) at time 0 becomes p l )  1 
available. Then consider the vector Z (1) = 2 

from z(o) and z(1). The kth observation z(k) allows the vector 

Z2(k) = to be formed. Let a2(k) be the estimate 

obtained by an optimum linear weighting upon the a r r ay  

elements. Optimum linear weighting ( k+ 1 ) ( k+4 ) 
2 This a r ray  has 

upon an array with these elements is equivalent to forming the 
i i j  optimum weights, Wo, W1, W2 for the polynomial 

k k k  

Because terms which a re  up to and including second order in the 

observables a re  considered, the scheme proposed has been called 

quadratic estimation". Polynomial estimators, which weigh observ- t 1  

ables up to third degree, a re  called cubic estimators, etc. 
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The minimum mean square e r r o r  quadratic estimate of the 

plant parameter a, based upon the vectors Z > zkS is obtained 

as follows: Let 

Z (k) = 2 and Vk) = 

Let AY (k) be defined as the difference between Y (k)  and the mini- 
2 2 

mum mean square linear estimate of Y (k) given Z (o ) ,  Z (l), . . . , 2 2 2 
Z (k-1) o r  equivalently, given AY ( o ) ,  . . . , A Y(k-1); then 

2 2 

-1 
A Y2(k) = Y2(k) - E .Y2(k) A (k-1) E A g ( k - 1 )  A;(k-l)] A g 2 ( k - l )  

2 
(3 .14)  

E A 

E A g ( k )  A g " ( k )  = 

(k) A g " ( k )  has by construction the property 
2 2 

0 0 . .  0 

. .  

. .  

(3 .15)  
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Hence 

k 

j=1  
Ay2(k)=Y2(k)- 

- 
(3 .16)  

where AY (k) is a (k+l) x 1 matrix, i. e., a (k+l) element vector. 

Define 
2 

m (k-j,k) = E A Y2(k-j) Y l (k )  

m *(k, k-j) = E Y2(k) A Y2 (k-j) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

2 * 
2 

p2(j) = E A Y2(j) A y z ( j )  

c2(j) = E a A Y,(j) 

Substituting Equation (3.16) into Equations (3.17) and (3. 20) yields 

* -1 
m2(k-j, k) = E  Y(k-j) Y (k)- E m  2 (k-j, k-j-l-J)p, (k-j-1-J)m 2 (k-j-l-J,k) 

(3.21) 
and 

k-j-1 

J=1 

-1 k 

J=1 
c2(k) = E A Y(k) - m l ( k ,  k- j )  p2 (k-4) c2(k) (3.22) 

The optimum quadratic estimate of a given z(o), . . . , z(k) is of 

course the optimum linear estimate of a given Y (01, Y (l), . . . , Ydk). 

But this estimate of a is also equivalent to the optimum linear 
2 2 

A 
estimate given Y2(o), Y2(1), . . e ,  Y (k); that is, if E denotes the 

best linear estimate of the arguments (Doob, Reference 11) then it 
2 

f 0 110 w s 

a2(k) = E (a 

= E(a 

= E(a  

A A 

A 

A 
(3.23) 



which is 

and this can be reduced because A (k) has the property indicated 

in Equation (3.15) to 
92 

k2(k) = $2(k-l) + [E a A Yl(k)] [E A Y2(k)A Y;(k)]-'A Y2(k) 

Use  of Equations (3.17) through (3. 20) results then in g2(k) having 

the expression 

A a2(k) = a2(k-l)  + c2(k) p,'(k) A Y(k) 

e2 (k )  2 = E [a-g2(k)] 2 

The mean square e r r o r  in estimating a by the quadratic estimate 

a2(k) is A 

- 
( 3 .  25) 

which in turn reduces from 

,G 

to 

( 3 .  26) 

Equa..,ms (3.24) and (3.26) give the desired recursion re la ions .  

coefficients a r e  given by Equations (3.21) and (3 .22) .  

The 

An exaxnple, showing the above technique has been programmed 

fo r  the IBM 7094 in FORTRAN IV language and is discussed in 

Appendix B. 

0. 

quadratic estimators is shown in Figure 1. 

a is considered gaussian with mean a and variance 

The reduction in mean square e r r o r  between the linear and 
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3.3 Generalization to Higher Ordered 
Po lvnomi a1 We i eht in e 

The previous analysis is readily extended to higher dimen- 

sions. With no loss of generality, one may consider the cubic 

estimator by defining 

Y3(k) = number of rows in Z (k) 3 

- - (k+2)(k+3 ) 
2 

The size of the Z (k) vector grows as 3 

If only a few observations a re  made, and then processed, cubic 

estimators appear feasible. The derivations of Section 3.2 go over 

directly, i. e . ,  one need only substitute Z (k) for  Z (k) in all the 3 2 
equations . 
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Similarly, polynomial weighting of mth degree requires only I 

to set Zm(k) to 

z (=)  = m 

z (1) = m 

mxl 

r (2)xl m 

The number of rows in the vectors a re  

m(m+l) 
2 

m(m+l) (m+2) 
6 

CY (1) = 

CY (2) = 

m 

m 

and so forth. Figure 2 gives the growth rate Figure 3 

gives the growth rate of the vector 3 (n) = m 

U s e  of the recursion relations reduces the size of the matrices ap- 

preciably. One needs only to compare the square of the length of 



2 1  

9 
- 

9 45  165 495 1377 

m 

n 

k 

z (k )  

= Order of weighting 

= Number of observations available 

= Measurement index (sampling time): k=O, 1 , 2 ,  . . . , n 

= Scalar measurement at kth sampling time 

= Vector used in recursive estimator of the form 

7 8 

1 1 

9 10  

45 

165 
-__ 

55 3 3 6 10  1 5  21  28 36 

4 4 10  20 35 56 84 120  

105 

56 0 2 20 

7 15  495 

1377 

I I 

LENGTH OF MEASUREMENT VECTOR Z (n) 

FIGURE 2 
m 
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m = Order of weighting 

n 

k 

z(k) 

Z,(k) 

= Number of observations available 

= Measurement index (sampling time). k=O, 1, . . . , n 

= Scalar measurement at kth sampling time 

= rz(k), . . . , z(k) 40), . , z p )  1 d k ) ,  4 k )  40) do), 

m m m 

mNGTH OF VECTORS (n) 

FIGURE 3 
m 
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the Z (n) vector with that of the square of the length of the (n) 
% m  

m 

vector for the same n and m. For quadratic weighting, the reduc- 

tion at the kth sampling is from 
n 

F o r  cubic and quadratic estimators this reduction is even more 

pronounced. 

High order polynomial weighting appears to be applicable 

primarily where only a few measurements a re  available for  process- 

ing and where i t  is desirable to extract the maximum amount of 

information from the information available. 

weightings depend only upon the statistics and not on the specific 

realization, the weightings can be determined before the realizations 

a re  available. 

processing of data at the time the realization is made available is at 

a premium - as  is the case in many space vehicles. 

Because these optimum 

This is particularly convenient in systems where 

In order to fully understand the discrete dynamical system, 

one should also investigate continuous dynamical systems. 

next two chapters the Bayes and the polynomial estimators a re  

developed for  continuous dynamical systems. 

In the 
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CHAPTER IV 

BAYES ESTIMATE OF SCALAR PLANT PARAMETER - 
CONTINUOUS TIME CASE 

Statement of Problem 

Consider the class of linear dynamical equations t given by 

where x(t) is a scalar  function of time, 

value of x(t) and is assumed to be gaussianly distributed with known 

mean x and variance V . "a" is called the plant parameter with 

known (or assumed) prior distribution. 

random process with zero mean and covariance function E E ( t )  E ( 7 )  = 

R b(t-7). E(t), a, x a re  statistically independent of each other. 

b ( t )  is the so-called impulse delta function. The above system is 

observed in a noisy environment over an interval of time T, i. e.  , 

t ,  x(o) = xo is the initial 

- 
0 0 

E ( t )  is a white noise gaussian 

0 0 

z(t) = x(t) + q(t)  

where q(t) is a white gaussian noise with zero mean and covariance 

function E q(t,) q( t2)  = N b ( t  -t ). q( t )  is statistically independent 
0 1 2  

of a, x, and S(t). The problem is to estimate a, the random plant 

parameter. 

The Bayes estimate, that is, the minimum mean square e r r o r  

estimate, is first  developed as a limit of an eigenfunction expansion 

for  the case of no disturbing noise , and then later, with disturbing 

noise. 

while Theorems 4 . 3  and 4 . 4  deal with both measurement noise and 

disturbing noise. 

state. 

Theorems 4 . 1  and 4 . 2  deal with only measurement noise 

Theorems 4 . 1  and 4 . 3  deal with zero mean initial 

Theorem 4 . 4  is the general solution to the identification of 

'See Footnote of Page 2. 

24 
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linear stochastic dynamical systems with independent white gaussian 

disturbance noise and independent white gaussian measurement noise. 

4 .2  Theorem 4 . 1  

Given 

(4.1) 

z(t) = x(t) + q(t) O I t I T < o o  (4. 2) 

at  x(t) = x e o r  equivalently 2 = a x, 0 I t 5 T < 00 
0 

where 
2 x is gaussian ( 0  mean, V ) and is the initial value of 

0 0 

x(t)J a is a random parameter with probability density 

p(a) having mean a. 
If - 

q(t) is white gaussian noise with zero mean and E q(t) q ( t )  = 

N 6( t -7)  where d(t) is a Dirac delta function. 
0 

Then 

the minimum mean squared estimate, the conditional expecta- 

tion, is 

J 

where 

L(?) N 0 2 [ s,’.(t) eat dt] - log 

(i) lf T = 0, then k = E a 

(4.4) 
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then 

where 

V 2  
0 

0 
Thus the low "signal-to-noise" - << I small  sampling- 

time estimator is a quadratic estimator. 

N 

(iii) If in addition to (ii), a is gaussianly distributed with - 
mean a and variance u, then 

W(tl, t,) = Wg(tl, t,) 
0 

2 1 a(t +t  ) +t1+t2) U 

e 1 2  V 2 T  
- vo 

2 N 2  0 

Proof to Theorem 4.1 

A .  Generation of a complete orthonormal set of functions. 

The covariance of x(t) given a is, since E x = 0, 
0 

a(t  t 1 2 
Rxla (t 1 , t,) = E  {[x(tl) x(t2)] I a} = Vo e 

(t , t  ) is clearly symmetric in  t and t 2  and Rxla 1 2 1 

, t2)  dtl dt2= Vo 

(4.5) 

(4 .6)  

for all  a < 0. The covariance of the noise q(t)  is 

Rn( t lDt2)  = E d t l )  '7(t2) = No 6( t l - t 2 )  (4 .7 )  



Proof to Theorem 4 . 1  (Continued) 

R n (t 1’ t 2 ) is symmetric and S6TSbPRn(t l , t2)dt ldt2=NT<m 

( 4 . 8 )  

is symmetric and 
r n m  

then t the integral 

( 4 . 1 0 )  

I 

is satisfied for at least one r ea l  number p .  Z 0 and some 

function $i(t;a) such that 
1 

( 4 . 1 2 )  

Expand Equation (4.  ll), using Equations (4 .5) ,  ( 4 . 7 )  and 

( 4 . 9 ) ,  then, 

e $i(tl; a)dt2+No 4i(tl;a) =pi(a) $l(tl;a) ( 4 . 1 3 )  

Thus we see there exists at least one $. say $1, which has 

the form 
1 

but 

(4.14) 

‘See Davenport and Root (Reference 10, p.  373), Courant and Hilbert 
Reference 8, Chapter 11, A r t s  4 and 5), or Riesz and Nagy (Refer- 
ence 36, p. 242). 



Proof to Theorem 4.1 (Continued) 
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2 e2aT-1 
2a 4:(tl;a) dtl = 1 = k 1 

s o  that 

(4.15) 

If the remaining 4 (t , a) are chosen orthogonal to dl(tl, a), 
i 1  

they w i l l  be such that 

) 4 (t ,a)  da = 0 i=2,3, . . . (4.16) i 2  

Thus the $.(t ;a) a re  arbitrary except that they a re  to be 

orthonormal to one another and to 4 (t ;a). One such set  is 
1 1  

a set  generated from {@.(t;a)} where 

@i(t;a) = e i=2,3, .  . . (4.17) 

1 1  

1 

iat 

By applying the Gram-Schmidt orthonormalization scheme to 
@i(t, a )  we generate the desired complete orthonormal set .  t 
The set  {$.(t, a)} is now a complete orthonormal set .  

characteristic numbers I - ( .  (a) a r e  

The 
1 

1 

(4.18) 

~ . ( d  J = No, j = 2 , 3 , .  . . 
B. Expansion of z(t) in te rms  of the orthonormal (O.N. ) set 

'A complete orthonormal set exists as a result of the integrable 
square property of 4i (t, a) and the positive definiteness of 

(t , t  ) (Reference 10, p. 374).- Rzla 1 2 



I .  Proof to Theorem 4 . 1  (Continued) 

Let 

T 
z i = & z(t) bi(t;a) dt 

then (Reference 10, p. 3 6 )  

n 

i=l 
z(t) =1.i.m. z. 4.(t;a) 

1 1  n - + m  

where equality is in the "limit in the mean'' sense. 

Estimate of "a" based on z i=l, 2, .  . . 
i' C. 

Let 

a N E E[a lz l , .  . ., zn] = l a p ( a l z  1' ..., z n ) d a  

o r  
n 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

F o r  given a, the set  {z.} is a se t  of uncorrelated zero mean 

gaussian random variables, i. e . ,  they a re  a se t  of independent 

gaussian random variables. 

1 .  

n 
(4. 23) 

= Xl(a) + N 
0 

E(z.z.la)= 0 
1 J  

i # j  (4. 24) 
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Proof to Theorem 4.1 (Continued) 

Set 
r) 

2 
1 2 

2 X  + N  ---t 2 N  z i 
1 1  

e 

Z 
- -  

o i = 2  1 0  e 
1 n-1 - 
2 -  2 

(27T)n'2 (Xl (a )  + N  0 0  ) N 

2 

By adding and subtracting - , N 

Z 
there results 

0 

2 
i 

n - Xl + - E  1 z 
h (a) = 

N (N +A1) No i=l n 
0 0  

(4. 25) 

(4. 26) 

(4.27) 

Substituting Equations (4.25) and (4.27) into Equation (4. 22), 

and cancelling terms in the numerator and denominator which 

do not depend upon a, yields 

2 2 

A (2n)""(N 0 +X,(a)) N 0 (4.28) 
a =  n 

n 

da 
. n-1 
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- 

2 
n 2 

X1zl (a) 
- - C zi (a) - log 

1 + -  
o i=l  

Proof to Theorem 4 .1  (Continued) 

da 

n 
1.i .m z. (a) = z2(t) dt . 

1 n+oO i=l 

The right-hand side is bounded for 

EloTz2(t)dt = E r x 2 ( t ) d t + N  0 T = V  0 2 E 

and 

2 

E [ C  z2(t) dt] < 

since T < 00 . 

(4.30) 

(4 .32)  

. A  A . .  a = l i m  a n n+m 



Proof to Theorem 4.1 (Continued) 

z(t) is a realization; it is independent of a since z(t) is 
given over 0 5 t 5 T. Cancelling IoT z2(t) dt from the 

exponentials of the numerator and denominator and then 

substituting for X1 z,(a) yields 

2aT 2 

32 

a =  n 

J 

(4 .34 )  

which is the Bayes estimate or conditional expectation of a 

given z(t), 0 5 t 5 T. This proves the main part of the 

theorem. 

E.  When T = 0, the exponent is zero, and s o  

V 2  
0 

0 

When - < <  1, O <  laTI<<I and N F. 

( 4 . 3 5 )  

2 $ [ c z ( t )  eat dt] < < 1 
0 



Proof to Theorem 4 . 1  (Continued) 

then the exponential may be expanded as  e' = 1 + A + 
A 2  - +  * * * = l  + A  where l A l < <  1. Hence, 
2 !  

and so Equation ( 4 . 3 4 )  becomes 

where 

This says the low "signal-to-noise" Bayes estimate is a 

quadratic estimator ! 

If in addition, 

a is gaussian with mean a and variance o 
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Proof to Theorem 4.1 (Continued) 

then 

2 2 
CT Z(t1+t2) - (t + t  1 2 2  

v o  2 1 2  
e 0 

W(tl,t2) = - 
0 l+- 

0 

and this is a symmetric inseparable kernel. 

Q.E.D. 

4 . 3  Theorem 4 . 2  

Given 

the same assumptions as  given in Theorem 4 . 1 ,  except that 

x the initial condition on x(t), has a mean not necessarily 

zero 
0 

then 

where 

- 0  1 +- N _. 
0 and 

0 
N 



then 

I z ( t )  eat dt 

m 

where 
- 
X w (t ) = N 0 E(a-a) e a t  

0 
1 1  

V 2  0 a(t t ) 
w (t t ) = -  E(a-a) e 2 1' 2 2N2 

0 

- 
X 
0 

V 2  

N 2  0 

0 and - and short In other words, for low - 
N '  

0 

sampling time, the Bayes estimate is a linear plus 

quadratic weighting of the observables. 

Proof to Theorem 4.2 

The arguments follow identically as  in Theorem 4.1, except 

where i = l  

i # l  

Then 
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Proof to Theorem 4 . 2  (Continued) 

1 -  2 
( 2 ~ ) ” ’ ~  (Al+No)’ N 0 

2 

Adding and subtracting - in the exponential yields 
Z 

0 
N 

- 2  -- 
2 n + - z z i  1 

N o l  
r J a )  = 

0 

n- 1 _ _  - - 
Cancelling the terms N and (2n) n / 2  in numerator and 

0 
denominator yields (as in Theorem 4 .1)  

and s o  

Now STz2(t)  dt is independent of a, since z(t) is a 

specific realization and is given. 

from the exponentials. Hence, 

0 
Hence it may be cancelled 

1 
+ - g(a) 

+$(a) da 

A {a p(a) e da 
a =  

J L a )  e 



Proof to Theorem 4 . 2  (Continued) 

where 
- 

Z 
1 2 

- z 2 + 2 -  
N 2  0 

N 1  

- 2  
(2,) 

0 
N 

/I- 1 +- 
No 

Parts  (i) and (ii) a re  obvious. 
Q.E.D.  

4.4 Theorem 4.3 

Given 

where 

x is gaussian (0, V ) and a is a random parameter with 

density p(a) 

2 
0 0 



1. c( t )  is a white gaussian random process with zero mean 

and covariance E S(pl) E ( p 2 )  = Ro 6(p1-p2). 

2. q( t )  is a zero mean white gaussian random process with 

E q(t l )  q(t ) = N 

A l l  random terms are  independent of each other. 

6(tl-t2) and uncorrelated with c(t). 
2 0 

3. 

where 

- L l T z 2 ( t )  dt + log D (a, e) 
No 0 

1 where S = - 
0 

N 

38 
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4. D (a;&-) 1 Fredholm determinant 

= exp [yo $ c W ( t ,  t;a, S )  dt 
0 

Proof to Theorem 4 . 3  

From the given statistics, it  follows 

(t , t ) is symmetric by inspection. If Rxla  (t 1 , t 2 )  is Rxla 1 2 
positive definite, i. e. ,  

for all  integrable square g(t), t E[ 0, TI such that g (T) dt>O, S O T 2  
then the conditions of Davenport and Root, Theorem 8, 

Page 374 are  satisfied and so  the orthonormal set  of eigen- 

functions which s at is f y 

nT 

forms a complete orthonormal set .  Index i is such that 
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Proof to Theorem 4.3 (Continued) 

(t , t  ) is positive semi-definite, then the closure of If Rxla 1 2 
the set  must be included to form a closed set  {4.} which spans 

the space. z(t)  is expressible, then, as 
1 

n 
z(t) = 1.i.m. z.(a) 4i(t;a) 

1 n+oo i=l 

where 

Consider the f i rs t  n, z.Is. 

independent gaussian sequence with mean 0 and variance 

X.+N for a given a . Thus 

The sequence {z.} is an 
1 1 

1 1  1 1  

1 0  

- 1 +log t+$)+log  N.] 

e i=l 2 

P(Z1O z2,  I z 1.1 = 
( 27r In ’ n 

The Bayes estimate based on z l , . . . , ~  is n 
1 - 5 %(a) 

- 3  %(a) 

A S a  p(a) e da 
a =  
n 1 

S p ( a )  e da 

where 

Ai(a) 
logDnf ,&)= o i=l log(,+- N 
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Proof to Theorem 4.3 (Conthued) 

2 
1, Substitute for z i. e. , 

q (a) = n 

2 
1, Substitute for z i. e. , 

q (a) = n 

Let 

Let n+W 

g(tl,t2;a) = 1.i.m. g (t t .;a) n+m n 1’ 2 

-- - 1 6 ( t  1 2  -t ) - W t  (1’ t 2 ;a, - io) 
0 

N 

where W (, t t ;a, - 1) h a s  the eigenfunction expansion 

and satisfies the Fredholm integral equation of the second 

kind 

This is easily seen by substituting the eigenfunction expansion 

into the integral equation and noting 
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Proof to Theorem 4.3 (Continued) 

Let 

where 

t is the Fredholm determinant. 

If t l=  t in the equation for  W(t t ;a,S), then 2 1, 2 

and 

0 T % 1 W(t, t;a, S) dt 
s o  

1 / N  

D (a, $-)= exp 

Q.E.D. 

4.5 Theorem 4.4 

Given 
- 

same as  Theorem 4.3 except E x = x is not necessarily 
0 0  

zero, i .e. ,  x E gaussian 
0 

Then - 

'See Reference 18, pp. 310-311 or Reference 8, Chapter 111. 
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where 

at 1 1 T T  1 [Z(tl)-:t1;JW(tl,t2;a,k)[z(t2)-e 2xo dtl dt2 

0 0  

1 2 
-loT[z(t)-eatGJ dt - log D (a, F) 

2. W t , t  ;a, ") satisfies the Fredholm integral equation 
( 1 2  N 

of the second kind: 

- 2 
- s Rx Ia(tl,t2) 

and 0 5 (tl,t2) 5 T. where S = - 1 
N 
0 

e - -  
2a 
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Proof to Theorem 4.4 

Follows directly the steps outlined in Theorem 4.3 except 

- at - 
= z(t) E[z(t)Ia] = x 0 e 

- 
and s o  z(t) of Theorem 4.3 is replaced by z(t)  - z(t). 

F o r  example 
- 3  

- - $(tl a )  $(t2 a )  
dtl dt2 2 I T I T [  z(t 1- z(t )I [ z(t 2) - z(t 2)1 X.+N 

i=l 0 0 1 0  

and so  forth. 

4 6 Generalizations and Comments 

The general Bayes estimate of the scalar plant a was de- 

veloped for  the case where white disturbing gaussian noise is acting. 

As far  a s  the author knows, the expressions developed are  new. 

Recently Professor R. E. Mortensen of the University of California, 

Los Angeles, developed expressions' identical to the results of 

Theorems 4 .1  and 4.2,  using a completely different approach. 

began with the stochastic partial differential equation derived in his 

Ph. D. dissertation. 

ential equations to a standard partial differential equation by adding 

the "Ito correction factor ' I 4 '  but modified for partial differential 

He 

3 3  
He converted the stochastic partial differ- 

equations. 21' 22  Fortunately, the partial differential equation that 

resulted was of f irst  order  and quasi-linear. 

solved by standard techniques as  in say Hildebrand. 

It could be readily 
1 9  

The problem of estimating a is fa r  more complex whenever 

disturbing noise is acting. 

'Unpublished correspondence. 

In that case the partial differential 
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equation of Mortensen is quasi-linear and of second order.  The 

solutions given in Theorems 4.3 and 4.4 await verifications by the 

method of partial differential equations. 

the nonlinear estimation schemes of Stratonovitch, 

and Fisher,  result in nonlinear partial differential equations. This 

is because Mortensen refers  the normalization required in order to 

obtain a probability density until after the solution to the PDE is 

obtained. 

It should be pointed out that 
38 26 

Kushner, 
13 

In this way he is able to solve these problems at  all. 

Nevertheless the general case where disturbing noise is 

present has not been solved by solving the PDE. 

It should be observed that expressions obtained in Theorems 

4.1 through 4.4 could obviously be extended to the case of estimating 

a function of a. This is accomplished simply by replacing "at' by 

f(a) in the a following after the integral sign: 
A 
f(a) = If(.) p[alz(t), 

The expression derived in Theorems 4.1 through 4.4 a re  not 

0 5 t 5 T] da. 

readily implemented. It appears possible however that a Monte Carlo 

scheme could be used on a hybrid analog digital computer. 

would be to choose "a" and x discretely from an approximate 

random noise source. Then substitute that value of a into the analog 

computer to obtain a simulation of the solution of the dynamical 

system. 

appropriately, depending upon the distribution of a and integrated 

numerically. 

digital computers a re  used. 

One way 

0 

The solution would be placed in the exponential and weighted 

In this way the desirable features of the analog and the 

Another approach is to approximate the Bayes estimate by a 

continuous polynomial weighting of the observation. Such polynomial 

weighting w i l l  be discussed next. 



CHAPTER V 

CONTINUO US POLYNOMIAL E S TIMA TORS 

5.1 Description 

By the optimum polynomial estimate of degree (say 

meant a polynomial of the form 

L m 

o r  abstractly the homogenous polynomial 

m )  is 

d t2+* + 

(5.1) 

(5.2) 

m 

which minimizes the mean square e r r o r  between it and the Bayes 

conditional mean a = E[ a I z(t), 
A 

0 5 t 5 TI. B 

The machinery and notation used in this chapter follows to 
38  some extent the recent work of A. V. Balakrishnan. 

5. 2 Sufficient Condition for Optimality 

A sufficient condition for polynomial estimators of the form 

given in Equations (5.1) o r  (5. 2)  to minimize the mean square error 

is that 

E(a-km) = 0 

k 

and 0 5 ti 5 T 

46 

(5.3) 

(5.4) 
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This can be seen by multiplying Equations (5.3) and (5.4) by 

t each over [O,T]. (k) 
k W (tlJ t2 , .  . . t ) and integrating t t k i J  2 J * * * J  

The sum of these equations is the equation E(a-2 ) 2 = 0 and this m m  
is the familiar condition for an orthgonal projection of a into the 

space of the polynomials of degree n. 

the mean square e r r o r  E(a-am) 

having the form given by Equation (5.1). 

Such a projection minimizes 
A 2  among the class of estimators 

5.3 Integral Equations 

If Equation (5.3) is substituted into Equation (5.4), then the 

following set  of n integral equations 

(5.5) 

where k = 1, 2,. . , , m  is to be solved simultaneously for  the m 

weighting functions W (i)(t 1 J  . . et.), i = 1 , 2 ,  . . .m.  W(O) is a function 

of the m weighting functions and the mean of a .  
1 

The dynamical system under consideration is assumed 

observed in a gaussian white noise environment. Consequently in 

each of the equations k = 1, 2, . * .  , m one of the weighting functions 

of Equation (5.4) wi l l  be outside the integral(s). 

integral equations, Equations (5.4), wi l l  be a se t  of Fredholm inte- 

gra l  equations of the second kind with one o r  more variables. 

Hence the set  of 

By applying the "Contraction Mapping" theorem to the method 

of successive a p p r o ~ i r n a t i o n , ~ ~ '  40 a sufficient condition on N 

be obtained such that the dth iteration 

can 
0 



(i) converges uniformly to W (tl,. . . ,ti). 

The specific details a re  described in the next chapter for  the 

case m = 2, i. e . ,  the quadratic estimator. 



CHAPTER VI 

CONTINUOUS QUADRATIC ESTIMATION 

In this chapter, the feasibility of using polynomial weighting 

of second order, m = 2, and henceforth called quadratic weighting, 

is investigated. The simplest non-trivial case is developed, so that 

the salient points a r e  not lost in an excessive amount of algebra. 

6 . 1  Integral Equations Specifying the Polynomial 
Weighting Functions 

Consider the dynamical system - dx(t) - - ax(t) ,  o 5 t 5 T dt 
with no disturbing noise acting and with x = x(o) gaussian with zero 

mean, x = 0, and variance squared, V 2 .  a is a random parameter 

with known probability density p(a) and mean a. Consider the 

system x(t) observed in white gaussian noise q(t) and where q( t )  

0 - 
0 0 

is characterized by E q(t)  = 0 and E q(t ) q(t ) = N a ( t  -t ). Let 1 2 0 1 2  
z(t) be the observation noise of the form z(t) = x(t)  + q(t), 0 5 t 5 T. 

If a is the quadratic estimate of a given z(t), 0 5 t 5 T, it has by 

definition the form 

A sufficient condition on W(O), W (1) (t), and W (2) (tl,t2), such that 
A 

- 
the mean square e r r o r  e 2=  E(a-a ) is minimized, is that 

2 2 
' A  A 

E(a-a2) = 0, E(a-a 2 ) z(t3) = 0, E(a-G 2 ) z(t 3 ) z(t 4 ) = 0 ( 6 . 2 )  

for 0 5 t3,t4 5 T. One needs only to multiply these equations by 

W(O), W(')(t3) and W(2)(t3,t,) respectively, integrate from 0 to T 

a s  necessary and add in order to obtain the orthogonality condition 
A A  E(a-a2) a = 0.  The weighting function of Equation ( 6 . 1 )  which 2 

satisfies Equation (6.  2 )  w i l l  now be found. 

49 
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6 . 2  Theorem 6 . 1  

If the conditions above are  satisfied 

then - 
(i) w ( o ) = E ~ -  &11W(2)( t l , t2 )E z(tl) z(t2)dtl  dt2 

(ii) W(l ) ( t )  = o 

(iii) d2) ( t , ,  t4) satisfies the integral equation 

where 
.I 

a(t 1+ t 2+ t 3+ t4 1 a(t + t  ) a(t3+t4) 
- V o  E e  2 E e  4 

g2(t18 t2;t3, t,) = 3 Vo E e 

(iv) The quadratic estimator is 
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(v) The minimum mean square e r r o r  is 

The proof has been referred to the appendix because it is 

rather detailed, containing several  pages of algebra (see 

Appendix C ) . 
6 3 Some Remarks with Regard to Theorem 6 . 1  

When N is sufficiently large or A is sufficiently small, 
0 2 W (t t ) may be approximated by 1' 2 

and so 

V 2  
but this is the Bayes estimate for C )  O < <  

N 6  
0 

i. e. ,  large noise and short sampling time 

0 

(6 .9)  
J 

1 and short sampling time, 

(see Theorem 4.1). 

and if  a is gaussian with mean a and variance 0, 

(6.10) 

- Za(t,,t,) u2(t l+t2)  2 

e dtl  dt2 (6 .11 )  
2 2  
2 

e Z D - -  

0 
2N 
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The double integral in the last expression can be evaluated using the 

tabulated Dawson' s integral (Reference 1, p. 319). 

(iii) In the next section, Section 6 .4 ,  some sufficient condi- 

tions a re  given on Nn or to ensure that the above approxima- 
U 

tions a re  valid first approximations of W(2)(t  t ) 1' 2 

6.4 Solutions of Fredholm Integral Equations by the 
Method of Successive Approximations 

In this section sufficient conditions a re  given on the noise 

covariance N to ensure that the sequence {W:2)(tl,t2)} of 
0 

successive approximations converges uniformly to the unique solution 
W (2 )  (t , t ) of the integral equation, Equation (6.5). t 

1 2  

Let R be the space of integrable square, rea l  continuous 

functions of two variables (t t ) each defined over the 

interval [ 0, TI and with a metric 
1' 2 

2 '1' 1 2 
P = 1 1 [x(t,,t2) - y(tl,t2)] dtldt2 

0 0  

for all points x, y E R. R is complete (a closed subset 

plete subset is a complete space). 

6.5 Theorem 6 . 2  

Given 

closed 

(6.12)  

of a com- 

conditions above on Equation (6.5) of Theorem 6 . 1 .  

Let 
a(t.+ t .) 

(6.13) 1 3  G =  max g ( t . , t . )  = max E e  
t i a t j  E[O, TI 1 1  J ti, t j  

ti, t j  E[ 0, TI 

'Another approach to solving the Fredholm integral equation is 
described by L ~ c h k a . ~ ~  By use of his "method of averaging func- 
tional corrections" it appears convergence of his successive 
approximations is more rapid, i. e e 
but more computation is required per  iteration. 

involving fewer iterations , 
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= max g (t t a t  t ) 
2 1’ 2’ 3’ 4 G2  t; E [ O J I  

1. 

i = 1, 2 ,3  

a(t + t  + t  + t  ) a(t +t a(t3+t4)1 
= rnax 1 2 3 4 - E e  2 E e  

If 

G2T N > -  
o 2G1 

1 

Then 

(i) the sequence (W(2)(t , t 1) generated by n 3 4  

M ( t , t )  2 0  3 4 
(2) wo (t3,tq) = - 

2No 

(6. Ih) 

(6.15) 

(6 .16 )  

converges uniformly to the unique solution W(2)( t  

Equation (6.5). 

t ) of 3’ 4 

GIl 
L 

(ii) If in particular, - << 1, then convergence 
2.1“ 

occurs for  

N > 2G1T 
0 
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Remark 

(2)  If the first  approximation of W (t3, t4), given by Equation 

(6 .16 )  is substituted into Equation (6. 6), the optimum quadratic 

estimate is the high noise - << 1 , 

Bayes estimate. In a sense this is analogous to the "low signal-to- 

noise'' case except that here, the mean is zero and the variance 

of x is small  compared to the noise. In short a s  V decreases, 

the spread of the distribution of x 

any realizations wil l  tend to be near x = 0. For  this reason - 
may be considered a power signal-to-noise" ratio. 

short time of observation k )  
0 0 

about L = 0 decreases, so that 
0 0 

V 2  
0 

0 
0 N 

1 1  

F o r  the case 2 f 0, Equation (6 .  2 )  results in two coupled 

Fredholm equations of the second kind (see Equations C. 2 and C.  3 

of Appendix C).  Sufficient conditions can be given on N-, just a s  i n  

0 

U 

this proof, s o  that the sequence of weighting functions W F ) ( t )  and 

W (t t ) w i l  converge uniformly to the solution of the coupled ( 2 )  
k 1' 2 

equations. 

Proof to Theorem 6 . 2  

1 Let X = -  
N -  

Set Wo (2) -  - Wo (2) (tl,t2) = M20(t l , t2 )  as the 
O 

(2 )  and initial iteration. Let Awn+, - Wn+l - W(2). Substitute Wn+l 

then W(n) into Equation (6.17),  subtract equations, apply Equation 

(6.12).  Then square, integrate twice over [ 0, T ] and apply Schwartz 

inequality. The result is 

( 2 )  - ( 2 )  
n 

n 

If A >  0 is chosen such that 1 0 1  XT [XG2T + 4G1 < 1 8 

2 1 



Proof to Theorem 6 . 2  (Continued) 

The conditions fo r  the contraction mapping theorem to hold a re  

satisfied. Hence p +O as n+m and W(2)+W(2) uniformly as 

n+m. Equation (3.39) implies 
n 

X 2 G  T 2 + 4 G 1 T - 2 < 0  
2 

1 o r  since X = - > 0, N the positive root is desired. 
0 

G2T 

.=. N > 
0 

2G1 
G, 

,a If - < < 1, the sufficient condition becomes N > GT. 
0 2G1 Q.E.D.  

Remarks 

1. Convergence is assured even when the noise is 

assumed sufficiently large. 

2. For “a” gaussian with the mean of a negative 

G 2  and G 

at  t = 0 o r  at t .= T, depending upon the magnitude 

of E,  (3, and T. 

wi l l  have an extreme maximum either 
1 

i 1 

3 .  Lower bounds on N can be developed by considering 
0 

say the operator G, defined by 

P P and mapping say h E L (0, T )  into L (0, T) 
i .e . ,  let h = G hn 1, IIGII = norm of G, and n 
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since 

I IIGpII llh n-p -h n-p-1 II 
Then 

and this gives a tighter bound on N . 
0 

t 6 . 6  Cramer-Rao Inequality 

The Cramer-Rao inequality gives the lower bound on the con- 

ditional mean, i. e., 
2 

where 

= Information in the sample [Reference 33 ,  p. 2181 

z = z.(a) a r e  the coefficients of z(t)  #i(t;a) dt 
i i  IoT 

and {$i(t;a)} a r e  the orthonormal set  of eigenfunctions described in 

Theorem 4.1. Fo r  the conditions of Theorem 4.1, the bias is 

b(a) = E(G2 la) -a 

‘See References 9, 28, 29, 30. 



Hence 

and s o  the quadratic estimate is a biased estimate. 

In order to determine the lower bound on the conditional mean, 

it is necessary to know I(a). The t e rm I(a) however causes dif- 

ficulty. This is because the term Q (a) given by n 

n 1 z;+c 
n o i=l 

where 

n n-1 c = - - log  2n - -  1% No n 2 2 

must be differentiated with respect to a, 

given a, and then the limit as n-w taken. 

averaged over zl, . . . , z n 

Consequently the Cramer-Rao bound is not directly 

obtainable. 

6 . 7  Synopsis of Chapter VI 

In this chapter the optimum minimum variance polynomial 

estimator of order two w a s  found, i. e . ,  in the sense that it satisfy 

a Fredholm integral equation of the second kind in two variables. 

By specifying sufficient conditions on the noise covariance, the 

method of successive approximations yields a convergent sequence 

which converges to the optimum quadratic weighting function. The 
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estimator that results reduces to the Bayes estimate when the 

covariance N of the measurement noise is sufficiently large and 

the time of observation is sufficiently small. 
0 

A method for determining the lower bound on the conditional 

e r ro r  squared, known as  the Cramer-Rao inequality, was sketched. 

The minimum variance mean square e r r o r  for the quadratic estimator 
2 

coincided with the Bayes estimate whenever No is large (No>> Vo ) 

and T is small. The quadratic estimator was shown to be a biased 

minimum me an -squar e -e r ror  estimator. 



CHAPTER VI1 

MATRIX PLANT 

7 . 1  Introduction 

Almost all  of the notions developed in the ear l ier  chapters 

ca r ry  over to the vector dynamical system. 

is that the elements in the plant matrix that are to be estimated 

should be rearranged, so that they form a vector. 

of the observables; they should be rearranged into an array.  If this 

is done, then nth order  polynomial weighting for both continuous 

time parameterization and discrete time parameterization ca r ry  

over. In fact, i f  the mean of the initial condition on the state x(t) 

is zero, then linear weighting on the observables does not reduce the 

mean square e r r o r .  It is not until higher order  weighting occurs 

that the estimate of the plant parameter(s) improve. 

The only added feature 

The same is true 

The pr ior  statistics required to specify a matrix of random 
16  parameters increases rapidly with the size of the matrix. 

example, a 2x2 matrix of 4 elements requires 4 means and 1 0  covar- 

iances; a 3x3 matrix, 9 means and 45 covariances; a 4x4 matrix, 1 6  

means and 136 covariances; and a 5x5 matrix, 25 means and 325 co- 

variances. Most linear physical systems however wi l l  not require 

anywhere near this number because only the last row of elements of 

the A matrix a re  random. Under these circumstances the number 

of statistics required to specify a 2x2, 3x3, 4x4, or 5x5 matrix of 

gaussian parameters, is respectively, 5, 9, 14, 20. Thus, an ap- 

plication of physical intuition permits an appreciable reduction in the 

number of quantities required to specify the distribution associated 

with the A matrix. 

F o r  
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7 . 2  Example of Continuous Quadratic Weighting 

To demonstrate the procedure once again, the following 

single non-trivial vector dynamic system is considered. Assume 

without lo s s  of generality that no disturbing noise is acting on the 

dynamical system. (If there were, a f e w  more obvious te rms  would 

need to be added to the statistical terms that a r e  already indicated. ) 

The dynamical system is 

(7 .1)  0 
2(t)  + al k(t) + a. x(t) = 0, x(o) = x 

It can be rearranged into the vector form 

that is 

- k ( t )  = A X(t)J - O r t s T  (7 .2)  

a 

measurement system measures Z(t) but in white gaussian noise 

and al a r e  the random parameters to be estimated. The 
0 

environment: 

The solution of Equation (7. 2) is 

Xt )  = eAt x 
-0 - 

but 

(7.4)  

(7.5) 



= CY + p hlt Xlt e 

h2t = CY + p  h t 
e 2 

The two equations above are  solved for  CY and p and then (Y and 

substituted into Equation (7.5). hl, h2 are  functions of the plant 

elements a 

the form 

Consequently, CY and p a re  also. Z(t) then has 
0, 

z ( t )  = Q(a0, al, t )  I + P (ao, al, t )  A t  + d t )  - (7 .6)  

(2 )  
Next form the vector 5 (t1J t2). It is defined by the terms of 

second degree generated from Z(t,) and Z(t ). Specifically - - 2  

(7 .7)  

Let b = r;]. The optimum estimate of b (and hence of a and a ) - 0 1 - 

of the form 

(2) 
t t ) is a 4x1 s ( 1 9  2 

is to be found. Z(t) is a 2x1 matrix while 

matrix; W(O) is 2x1, W(l)(t) is 2x2, and W(2)(tlJt2) is 2x4. Had 

we not known that two of the elements of A were 0 and 1, then 

all four elements of A would need to be estimated. This would 

result in b - being 4x1; W(O) being 4x1; W (t) being 4x2; and 

W (t t ) being 4x4. The result is twice a s  many parameters 

would need to be determined. 

(1 1 
(2)  

1' 2 
Fortunately this generally wi l l  not 
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be the case, for additional information is often available. 

now to the original problem of Equation (7. l), we find a sufficient 

condition for an  estimator of the form of Equation (7.8)  to minimize 

the mean square e r r o r  is that 

Returning 

A 
E(b-b) = 0 

These a re  the conditions stated many times in the past. 

one obtains the equations: 

From them 

1 Z(t,) Z9'(7)-E Z(tl) E Z*(7) dtl 
* T  

E(b-c) ( Z ( 7 ) - 5 ) )  =I W 
0 

(2 )  
+lTlTW(2)(tl ,  t,) (tl, t,) Z"(T)-E 3 (t,, 

0 0  

and 

Since the measurement noise is assumed white gaussian, a pair of 

vector Fredholm equations of the second kind occur. 

6.4 of Chapter VI, sufficient conditions may be found s o  that the 

method of successive approximations could be used to find the opti- 

mum weighting functions and the minimum mean square error. 

A s  in Section 

The 



details a r e  a straightforward extension of the discussion in Chapter 

VI. Incidently, the discrete qiladratic estimator may be developed, 

using a method similar to the method used to solve the continuous 

problem. The extension to higher degree weighting is simply a 

straightforward application of the techniques already developed. 



SUMMARY, RESULTS, AND CONCLUSIONS 

Summary 

The identification of linear time invariance stochastic 

dynamical systems is made for the class of systems where the plant 

is characterized by either a scalar random parameter or by a 

matrix of random parameters having known distribution. 

state is assumed gaussianly distributed with known mean and var- 

iance. White gaussian disturbing noise with zero mean and known 

variance is acting on the dynamical system. 

The initial 

The state of the system is observed under the influence of 

additive white gaussian noise, having zero mean and known covari- 

ance. 

independent of the white gaussian disturbing noise. 

to identify the plant parameters such that the mean square e r r o r  

between the plant parameter(s) and the estimate a r e  minimized. 

optimum estimate is the conditional mean o r  Bayes estimate. 

The white gaussian measurement noise is statistically 

The problem is 

The 

Both discrete and continuous systems are  investigated. 

Recursive polynomial estimators a re  described and some of their 

asymptotic properties discussed. 

recursive quadratic estimators a re  designed and extensions noted. 

Both discrete and continuous 

Results 

The Bayes estimate of the scalar plant parameter for the 

discrete case requires integrating a function which has the ratio of 

two polynomials in a in the exponent. The order of the polynomials 

grows as 2(k+ 1) where k+ 1 is the number of observations. The 

integral is not readily integrable. 

function mentioned above, as  we l l  as  the Bayes estimate which con- 

tains this function, may be approximated as  an infinite sum of 

However, it is shown that the 
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polynomials in the k+ 1 variables ranging in  order from zero to 

infinity. 

If the mean initial state is zero, linear weighting on the 

observables is shown to give no improvement to the estimate of the 

plant parameter beyond the initial estimate, i.e., its mean. In 

short, not until nonlinear weighting on the observables occurs does 

the estimate improve. IBM 7094 FORTRAN Programs of the linear 

weighting case and quadratic weighting case indicate the superiority 

of quadratic weighting. The programs are  described in Appendix J3. 

By using recursive estimators, the dimension of the space required 

reduces from (k+1)(k+4) 9 to k t l .  This means the number of 
L 

elements of a matrix to be inverted is reduced by [ (k+ 1 ;k+ to 
2 (k+ l )  . Extensions to higher dimensions a re  indicated. Figures 2 

and 3 show the rate of increase of the required state space as  the 

degree of the polynomial and the number of observation changes. 

The Bayes estimate for the scalar random parameter con- 

tinuous time case is derived (see Theorems 4 . 1  through 4.4). 

integrals to be evaluated appear too difficult to be solved directly, 

however they could be evaluated by numerical techniques, once the 

specific realization is available. 

The 

Continuous polynomial estimators are  developed. Sufficient 

conditions a re  given on the weighting functions, so that the mean 

square e r r o r  between the plant parameter a and the polynomial 

estimate a is minimized. The conditions result in a set  of 

coupled Fredholm equations of the second kind. 

quadratic weighting is used and the mean initial state is zero, suf- 

ficient conditions a re  given on the measurement noise s o  that the 

above Fredholm equations may be solved by the method of successive 

approximations. 

m 
For the case where 
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The techniques specified above apply directly to linear vector 

dynamical systems. A second order system with damping is 

investigated. 

Conclusions 

Polynomial estimators a re  specifically useful where noise 

levels a r e  high and the observation time (or number of samples) is 

small. 

functions predetermined. 

They also have the advantage of having their weighting 
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APPENDIX A 

RECURSION EQUATIONS FOR LINEAR ESTIMATOR 

The dynamical system is 

k 

j = l  

k 
‘j-1 x(k+l) = ax(k) + E(k) = a x + ak-j 

0 (A. 1) 

where the circumflex over E denotes the optimum linear estimate 

of y(k) when y(o), y(l) ,  . . . , y(k-1) is known (see Doob, Reference 

11). Then 

A y(k) = y(k) - (y(k) I A yb), A y(l) ,  . , A y(k-1)) (A. 4)  

Let 

AY,(k-1) = (A. 5) 

* 
Then E AY,(j) A Y,(j) 

E Ay(i) Ay(i) and 

is a diagonal matrix with diagonal elements 

k -1 
AY(k) = y(k) - 

Note E y(i) Ay(j) = 0 for all j 2 i. Let 

(Ey(k)Ay(k-j)) (EAy(k-j)Ay(k-j)) Ay(k-j) (A.6) 
j = l  
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Substituting Equation (A. 6 )  into Equations (A. 7 )  and (A. 9) gives 

m (k-j, k)  = E y(k-j) y(k) 
1 

(A. 10) 
-kl-lm;(k-j, k-j-1-,8) p -1 (k-j-1-,&) m(k-j-1-1, k) 

1 ,&=O 

(A. 11) 
-1 k 

,&=1 
cl(k) = E ay(k) - cr(k-a)  p1 (k- j )  m(k-R, k) 

The optimum linear estimate of- a given z 0 . . . zk, denoted by k(k), 

is 

al(k) = E[a I z b ) ,  dl), , z(k)]= E[ a lA y(o), . . . , A  y(k)] 
A A A 

That is, 

kl(k) = a +((E aAY(k)) (E AY(k) AY*(k))-l AY(k) 

-1 =g1(k-l) + cl(k) m1 (k, k) Ay(k) 

Similarly, the minimum mean square e r r o r  resulting from linear 

weightings is 
* -1 - 

e l  2 (k) = E(a-a)2- (E a h  y(k)) [.A y(k) A y(H] (. a A  y(k)) 

$< -1 
E a A y(k) [E A y(k) A y(k)] = el  (k-1) - 

= el  (k-1) - cl(k) p1 (k) cl(k) 

(E a A y(k)) 
2 

2 -1 

and gives the desired relations. An example has been programmed 

for the IBM 7094 using FORTRAN IV language. 

a is assumed to be gaussianly distributed. 

normalized by the variance of a has been plotted. See Figure 1. 

The plant parameter 

The mean squared e r r o r  



APPENDIX B 

COMPUTER PROGRAMS 

The equations developed in Appendix A were set  into 

FORTRAN IV computer language. Double precision was used where 

possible. The program generated the required statistical mDments 

and evaluated the necessary terms via recursive relations. 

The distribution of the plant parameter was  chosen rather  

arbitrari ly to be gaussian with some mean and variance but i t  could 

just as easily have been some other distribution with the moments 

determined either in closed form or by a Monte Carlo scheme. 

I. LINEAR ESTIMATOR 

th The k moment for a gaussian with mean a and variance u 

is given by 

1 

a 

- 2  2 a = (a) + (T 

- r - 
k 

k = O  

k = l  

k = 2  

where the bar  over a denotes the expectation and the bracket t e rm 

above the summation sign, i. e . ,  [SI, denotes the largest integer 
T 

A double precision function was defined which generated a . 5 -  

This subprogram was then used to generate the subprograms 

E y(i) y(j) and E a y(i); that is 

k 
2 '  
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i 

8=1 

-- - 
i+j-28+N i 5 j  

o i j  
a3 x 2- a2 R~ a 

0 

7- _. 
i+ j -28+N j 5 i  

o i j  
2 - -  a3 x2- a a(xo) 

0 

E y(i) y(j) = 

and 

The above subprograms were then used in the recursive equation 

m,(k-j, k )  = E  y(k-j)y(k) - 
k-j 

l?=1 
ml(k-j, k-j-l?) p 1 -'(k-j-8)ml(k-j-a,k) 

with 

and in the recursive equation 

c(k) = E ay(k)  - 

c(o) E(a-a) z (o )  = 0 .  

k 

l?=1 

-1 cJc(k-8) p1 (k-l?) m(k-l?, k)  

The above programs a r e  sufficient to generate the minimum 

mean square e r r o r  recursively: 

2 2  E (k) = E (k-1) - cl(k) p;'(k) cl(k) k = 1 , 2 , .  . .n  

with 
2 2 

E (0) = 0 . 
After the measurement z(k) is made, the term A y(k) is generated 

by 
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- k 
Ay(k) = z(k) - a X - 

with 

k 
m,(k,k-j) pil(k-j)  Ay(k-j) 

0 j = l  

- 
Ay(o) = z(0) - xo 3 

and then substituted into 

&k) = &(k-1) + cl(k) pil(k) Ay(k) k = 1, 

with $(o)  = a. 
FORTRAN program for the linear estimator. 

This completes the equations needed to generate the 

II. QUADRATIC ESTIMATOR 

The computer program to generate the optimum quadratic 

estimate of the plant parameter and its corresponding mean square 

e r r o r  were developed by use of the following subprograms: 

th 1. k moment gaussian. This program was the same 

as the one used in the linear estimator program 

(see Part  I). 

Indexing subprogram for  mapping the significant 

terms of the matrix consisting of the submatrices 

E Y(i)Y*(j) into a linear array.  In this way the 

storage problem is reduced from n to - an 

order  of magnitude. The significant te rms  a r e  those 

te rms  in the upper triangle of submatrices and the 

upper triangle of elements of each submatrix, see 

Figure 4. 

2 e 

4 

1 2  
4 n 

The following equations generate k from CY, p, i, j .  

k is defined only for 

j = 0 , 1 , 2  ,..., n 

i = O , l , . o . , j  
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ADDRESS OF THE (a, 0) ELEMENT OF THE (i, j) SUBMATRIX 

CORRESPONDING INDEX NUMBER k. 

ASSOCIATED WITH THE MATRIX [ E Y,(i) Y 9 j )  1 AND THE 

(a, p)  shown in lower left corners, k shown in upper right corners. 

FIGURE 4 
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1 5 0 5 i + 2  

p = C Y ,  CY + l , . . . , j  + 2  

Note however that because of symmetry within the 

m (i, j )  matrix, the value of the element at the (a, p)  
address is the same a s  the one in the @,CY) address. 

2 

and 

I o  

a = l  

C Y 1 2  

i = O  

j = O  

j r l  

then 

kl(j ,a)+k2(j , i)+kg(j)+P-cz+l CY 5 p 

kl(j,/3)+k2(j,i)+k3(j)+cz-p+1 CY p 
K =K(j, i;a, P )  2 - -  

3 ,  Indexing subprogram for mapping the significant elements 

of the p (j)  matrix into a linear array,  Figure 5 shows 

the relationship. An equation which maps these elements 

in this manner is 

-1 
2 



ADDRES 

4 

4 

6 

OF THE (a,p) ELEMENT OF THE ith MATRIX 
-1 m (i, i) = [ E A Y,(i) A Y;(i)]-' AND ITS INDEX - KI. 

(a,p) shown in lower left corners, - K I  in upper right corners.  

FIGURE 5 
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where 

c o  0 2 1 ,  j = O  

I o  C Y = l  j r l  

j = O  

j P l  

The bar below K I  is to denote K I  - is the function name 

of the index in FORTRAN language. That is, for cy 5 P ,  

and the role of CY, p is reversed if CY > 0. 

4. A ranking routine which takes a se t  of a = 2,3, or 4 

positive integers and rearranges them into a set  of inte- 

gers with increasing magnitudes. 
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This routine is required in the E z(i ) z(i ) a  

E z(i  ) z(i ) z(i  ) and E z( i l )  z(i2) z(i3) z(i,) subprograms 

due to the assumptions made that the disturbing noise and 

the measurement noise be "white". 

1 2 

1 2 3  

5. Subprogram to generate E z(i) where 

E z(i) = a x 
L 

i -  
0 

6. Subprogram to generate E z(il)z(i2) . For i 2 2 i 1' 

i +i - il i +i - 2 ~  
'+N 6 

2 x 2 + ~  a o i i  a =1 1 2  0 0  
E z(i ) z(il)  = a 2 

1 

where 6 is the Kronecker delta function. 
i i  1 2  

7. Subprogram to generate E z(i3) z(i2) z(il). For 

i 2 i 2 ila E z(i3)z(i2)z(il)  = 3 2  

i +i +i - 
3 2 l x 3 +  = a  

0 

i - 
i 1 i +i -2J1 

+ 3 1  a l = l  c a  

- - 
3 i 

i i  1 3  
a, =1 

6i 1 2  i I 
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1 i + i  + i  + i  -2R1 4 3 2 1  + 
i +i +i +i - - 
4 3  2 1 4  2 

xo +"o Ro = a  

i 2 i +i + i  + i  3 '  i +i  +i  +i -2R3 
i 

+ 2  a 4 3 2 1 -282 ,  a 4  3 2 1 ] 
R 2 = 1  R 3 = 1  

+ c  c a  
0 R1=l R3=1 1 i i i  

2 i + i  + i  + i  -2J2-2R1 1 3 i + i + i + i  -2R 2R1 
4 3 2 1  3- 4 3 2 1  

i + i  
+ 3 2  

i + i  

hi i + a  6i i 
4 1  

i + i  
26 i  i + a  

3 1  3 2  4 1  
- 
i + i  

i i  R,= 1 2 1  
hi +a 

3 1  
+ a  

4 2  
J L 5  

i il i +i - 2 ~  + i f ai3+i2-2R2 
+ f ai4+i2-2R 4 1  1 

i 4 1  R2= 1 6i 3 i 1 + E a  al=l 'i 3 i 2 a2=1 

1 i i 1 i + i - Z  

+ c a  6i i a =1 4 2 R1=l 
1 2  1 

6i i 
4 3  

+ ai3+il-2R 1 

1 

6 + b i i  6 
+ 6 i i  6 i i ]  4 1  3 2  

i i  i i  4 3 2 1 4 2 i3il 
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E A Y ( c Y , ~ ) = ~  

9. Subprogram to generate E A Y(cY, k), 1. e .  , 

- -  
k+l - k - 

(a -a a )xo 

(a - a a  )x 

[ k+cu-l -a - a k+a-2]> + 

- - 
k+l - k 2 

0 

0 
a 

where CY is the cyth t e rm in the vector E(a-a)g(k).  

It follows, 

0 r k=O 

k r l ,   CY=^ 

k Z l , c u = 2  

1 +RoCYi2 [ak+~-1-2r -a - a k+cr-2-2r 

r=l 
k r l ,   CY?^ 

The bar below E A Y is to denote that E A Y is the name 

assigned to the FORTRAN function subprogram. The 

bar  below a letter does not denote a vector in Appendix B. 

L 

10. Subprogram to invert matrices. The subprogram should 

also indicate when the determinant is zero and hence, 

inversion is not permitted. 

then singular. 

The estimation problem is 

11. Subprogram to generate elements of the (cu,p) compon- 

ents of the (i, j) submatrix E Y2(i) Y2 (j). That is, f o r  

a given CY, p,  i, j such that 

* 
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j = OB1,2,. . . ,n 

i = O,l , . . . , j  

a =  1 , 2 , . . . ,  i + 2  

p = a ,  a+1, ( ~ + 2 , . . . , j + 2  

E z(i) z(j) - E  z(i) E z(j) a = 1 ,  p = 1  
E Y Y= E z ( i )  z(j) z(p-2) - E  z(i) E z(j) z(p-2) 

E z(i) z(a-2) z(j) z(p-2) - 

(Y = 1, p 2 2 -i E z(i)  z(a-2)E z(j) z(p-2) c u r 2 ,  p r 2  

If CY > p, a is replaced by p and p by a. 

12.  Subprogram to generate the following recursion relation: 

Let My/ be the (a,P) component of the (i, jIth sub- 

also be the (a,p) matrix EAY(i)Y*(j) and M.. 
J1 

component of the (i, j)th submatrix E A Y(i)  Y"(j) f o r  

j 2 i. Note EAY(i)Y*(j)= 0 for  j < i. 

*a, p 

A 
Since A Y(i) = Y(i) - E(Y(i) lY( i - l ) ,  e . Y(0)). 

The (a, p)  component of Equation (3.21) is then 

NOW, if use is made of the indexing subroutines of Steps 

2 and 3, the following may be defined 

QP DYY(K)  E M .  i j  

where & is the index of subprogram 2 and associated 

with (j,i;cx,p) and 



a4 

where K I  is the index of subprogram 3 and associated 
-1 with (i-a; p18 p 2 ) .  The matrix Mi-Rl , i-RI is the matrix 

Mi- j t  , i - j t  inverted. Whereas 

is the ( p 1 8  p,) element of the inverse. 

relation for M:: above becomes 

The recursion 

R = l  p ,= l  p g l  

where - K is the index of subprogram 2 generated from 

(j, i;a, P )  
KA - is the index of subprogram 3 generated from 

(i, i-R;a, pl) 

- K I  is the index of subprogram 3 generated from 

(i-J;pl8 p 2 )  

and 

is the index of subprogram 2 generated from 

(j, i-R;p28 P I  

1 3 .  Subprogram to generate elements of the matrix recursion 

relation, Equation ( 3 .  22): 

where C2(j) = EaAY2(j) .  Let C2(a;j) be the ath 

element in the vector C (j). 
2 



. 

maps the ath element of the jth vector C,(j) 
____ L 

(n+l)(n+4) + + 2. 
2 into a linear array.  NC = 1 , 2 , .  . ., - 

If DC(NC) denotes the ath element of C2( j )  then -- 
j - 1  j+  2-1 j+  2-R 

a=1 p =1 p =1 
DC(NC) = E  AY(a;j)  - Dc(ND). -- -- - 

1 2 

.DYYI(KI)  D Y Y ( K )  - 

(j-a+ 1)(j-1+4) - ND = 2 + P  

- KI is the index associated with the inverse 

matrix and generated from (j-a;p 

K is the index generated from (j, j-R;p , p )  
1’ p2) 

2 - 
14. Subprogram to generate the associated mean square 

e r ro r :  

j + 2  j + 2  

1 2  

E 2 ( j )  = E 2 (j-1) - 
2 2 p =1 p =1 

c DC(NC).DYYI(KI)  DC(ND) - - -  -- 

where 

(j+ l ) ( j + 4 )  
2 + p1 NC = - 

- K I  is the index associated with the inverse 

matrix and generated from (j;p 1’ p2) 
(j+ l ) ( j + 4 )  

2 + p2 ND = - 
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and 

2 
0 is the variance squared of 

15. Subprogram to generate A Y (k) 2 
z(o), z ( l ) ,  . . . , z(k): 

k 

. 
the plant parameter a. 

of Equation (3 e 161, from 

The 0th component of Y (k), denoted YA(k,a)  - is 2 

YA(k' 
= 1 z(k) z(a-2)  - z(k) z (a -2 )  

C Y = l  

CY22 

and the ath component of A Y  (k) denoted =(k,rr) is 2 

k k +  2 - 1  k+ 2-a 
DY(k;a)=YA(k;a)  - D -- Y Y (K). - - a=1 pl=l pz"' 

D Y Y I  (KI)  D Y(ND) - 
where 

D Y Y(0;cr) = E A Y(0;a) 

K - is the index of subprogram 2 associated with 

(k, k - a ; ~ ,  pl) 

- KI is the index of subprogram 3 associated with 

( k - b 1 ,  P 2 )  

and 

(k+ l ) ( k +  4) 
2 + p2 ND = - 



87 

I .  

16.  Subprogram to generate the optimum quadratic estimate 

of the piant parameter a, a s  given in Chapter 111: 

k+2  k+2  
= $(k-1) + DC(NC) DYYI(=)  D Y ( z )  -- 

p =1 p =1 1 2  
A where a (0) = a, 2 

(k+ l ) (k+4)  
2 + P1 * NC = - 

K I  - is the index of subprogram 3 associated with 

(k; J p 2 ) 8  

and 

(k+ l ) ( k  + 4 )  
ND = 2 + P2' 

This completes the description of the computer program 

for the quadratic estimator. 



APPENDIX C 

THEOREM 6 .1  AND PROOF 

Theorem 6 .1  (repeated for convenience) 

If the conditions of Section 6 . 1  are satisfied, then 

(i) W(O)=E a -  S o $ W ( 2 ) ( t l ,  t 2) E z(tl) z(t2) dtl dt2 

(ii) W(l ) ( t )  = o 

(iii) W(2)(tl, t,) satisfies the integral equation 

where 

M (t t ) = E(a-m) z(tl) z(t2) 
20 1’ 2 

2 a(tl+t2) 
g ( t  t ) = V  E e  1 1’ 2 0 

(iv) The quadratic estimator is 

88 
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(v) The minimum mean square e r r o r  is 

a(t + t ) 
dtldt2 (6 .7 )  

= cr2- ITlTW(2)( t l , t2 )Vo 2 E(a-a)e 

0 0  2 e 

Proof to Theorem 6 . 1  

Substitute Equation ( 6 . 1 )  into Equation (6.2).  There results 

directly 

(C. 1) 

Q.E.D. Part (i) 

and substituting this equation too into Equation (6.21, gives the 

following two integral equations 

m m  

r n  

where, since 2 = 0, 
0 

M (t ) = E(a-a) z(t3) = 0 (C. 4 )  lo 3 
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a ( t + t + t  +t  ) a(t + t  ) a(t3+t4) 

a(t a(t +t  ) a(t 2+ t3 1 

= 3 V  0 4 E e  4-V:Ee 2 E e  

t3 1 
614' 4 6  +e  624+ e 23 

6 1 3 \  +N: [613 6 14 + 6  1 4 ~ 2 3 1  

0 

a(t 2+ t4 1 
+ e  

where 6 . .  = impulse function = 6(t  -t ). 

to (C. 6 )  into Equation (C. 2) yields 

Substituting Equations (C. 4) 
1J i j  

+ N  6 ( t  -t ) dtl= 0 (C. 10) 1 a(t +t ) 

0 0 1 2  

A sufficient condition for this to hold is for W(')(t ) 

set 

0. Therefore 1 

w (1) (t) = 0 O s t S T  (C. 11) 

This proves Par t  (iii). 

Equation (6 .4 )  in Equation (C. 3 )  yields 

dt2 )v + 
(C. 1 2 )  
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where 

a(t + t  +t + t  ) a(t + t  ) a(t + t  1 
4-v  E e  2 E e  (C.13) 

4 
00 1’ 2’ 3’ 4 0 0 

g (t t .t t ) = 3 V  E e  

Equation (C. 1 2 )  is a Fredholm equation of the second kind in two 

variables. From the symmetry of Equation (C. 1 2 )  in (t t ) and 

(t , t  ) we can without loss of generality assume W(t t ) symmetric. 

Let X = - . Then using the assumption of symmetry W(t t ) = 

W(t4, t3 )’ and rearranging 

3’ 4 

4 3  3’ 4 
1 

N 3’ 4 
0 

(2)  A2 W (t t ) = - M  (t t ) - -  3’ 4 2 20 3’ 4 2 

where the double bracketed term denotes the collection of terms 

inside the double brackets of Equation (C. 12) .  The W(2)(t t ) 

which satisfies Equation (C. 12)  gives the desired quadratic weighting 

function. Substitute Equations (C. 1) and (C. 11) into Equation (6.1) .  

There results 

3 4  

where d 2 ) ( t  , t ) satisfies Equation (C. 14). The desired expres- 

sion fo r  the continuous quadratic estimator has been developed. 
1 2  

Q.E.D.Part (iv) 

The mean square e r r o r  of the quadratic estimator 

2 A 2  e = E(a-a2) becomes 2 
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or 

Q.E.D. Theorem 6 .1  


